Limitations of Learning via Embeddings in Euclidean Half-Spaces
نویسندگان
چکیده
The notion of embedding a class of dichotomies in a class of linear half spaces is central to the support vector machines paradigm. We examine the question of determining the minimal Euclidean dimension and the maximal margin that can be obtained when the embedded class has a finite VC dimension. We show that an overwhelming majority of the family of finite concept classes of any constant VC dimension cannot be embedded in low-dimensional half spaces. (In fact, we show that the Euclidean dimension must be almost as high as the size of the instance space.) We strengthen this result even further by showing that an overwhelming majority of the family of finite concept classes of any constant VC dimension cannot be embedded in half spaces (of arbitrarily high Euclidean dimension) with a large margin. (In fact, the margin cannot be substantially larger than the margin achieved by the trivial embedding.) Furthermore, these bounds are robust in the sense that allowing each image half space to err on a small fraction of the instances does not imply a significant weakening of these dimension and margin bounds. Our results indicate that any universal learning machine, which transforms data into the Euclidean space and then applies linear (or large margin) classification, cannot enjoy any meaningful generalization guarantees that are based on either VC dimension or margins considerations. This failure of generalization bounds applies even to classes for which ”straight forward” empirical risk minimization does enjoy meaningful generalization guarantees.
منابع مشابه
Limitations of Learning Via Embeddings
This paper considers the embeddability of general concept classes in Euclidean half spaces. By embedding in half spaces we refer to a mapping from some concept class to half spaces so that the labeling given to points in the instance space is retained. The existence of an embedding for some class may be used to learn it using an algorithm for the class it is embedded into. The Support Vector Ma...
متن کاملHyperbolic Entailment Cones for Learning Hierarchical Embeddings
Learning graph representations via lowdimensional embeddings that preserve relevant network properties is an important class of problems in machine learning. We here present a novel method to embed directed acyclic graphs. Following prior work, we first advocate for using hyperbolic spaces which provably model tree-like structures better than Euclidean geometry. Second, we view hierarchical rel...
متن کاملEstimating the Optimal Margins
Concept classes can canonically be represented by matrices with entries 1 and ?1. We use the singular value decomposition of this matrix to determine the optimal margins of embeddings of the concept classes of singletons and of half spaces in homogeneous Euclidean half spaces. For these concept classes the singular value decomposition can be used to construct optimal embeddings and also to prov...
متن کاملPoincaré Embeddings for Learning Hierarchical Representations
Representation learning has become an invaluable approach for learning from symbolic data such as text and graphs. However, while complex symbolic datasets often exhibit a latent hierarchical structure, state-of-the-art methods typically learn embeddings in Euclidean vector spaces, which do not account for this property. For this purpose, we introduce a new approach for learning hierarchical re...
متن کاملHybed: Hyperbolic Neural Graph Embedding
Neural embeddings have been used with great success in Natural Language Processing (NLP). They provide compact representations that encapsulate word similarity and attain state-of-the-art performance in a range of linguistic tasks. The success of neural embeddings has prompted significant amounts of research into applications in domains other than language. One such domain is graph-structured d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 3 شماره
صفحات -
تاریخ انتشار 2001